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The Semi Empirical Mass Formula

SEMF
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0 Introduction to the SEMF
 Aim: phenomenological understanding of nuclear 

binding energies as function of A, Z and N.

 Assumptions:

 Nuclear density is constant (see lecture 1).

 We can model effect of short range attraction due to 
strong interaction by a liquid drop model.

 Coulomb corrections can be computed using electro 
magnetism (even at these small scales)

 Nucleons are fermions at T=0 in separate wells 
(Fermi gas model  asymmetry term)

 QM holds at these small scales  pairing term.

 Compare with experiment: success & failure!



surface area ~ n2/3

1 Liquid Drop Model Nucleus
 Phenomenological model to understand binding energies.
 Consider a liquid drop

 Ignore gravity and assume no rotation
 Intermolecular force repulsive at short distances, attractive at 

intermediate distances and negligible at large distances  constant 
density.

 n=number of molecules, T=surface tension, B=binding energy
E=total energy of the drop, a,b=free constants

E=-an + 4pR2T  B=an-bn2/3

 Analogy with nucleus
 Nucleus has constant density

 From nucleon-nucleon scattering experiments we know: 
 Nuclear force has short range repulsion and is attractive at intermediate 

distances.

 Assume charge independence of nuclear force, neutrons and protons 
have same strong interactions check with experiment (Mirror Nuclei!)



2 Coulomb Term

 The nucleus is electrically charged with total charge Ze

 Assume that the charge distribution is spherical and compute 
the reduction in binding energy due to the Coulomb 
interaction
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to change the integral to dr ; R=outer radius of nucleus

includes self interaction of last 
proton with itself. To correct this 

replace Z2 with Z*(Z-1)
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in principle you could take d from this 

calculation but it is more accurate to take it 
from the overall fit of the  SEMF to data 

(nuclei not totally spherical or homogeneous)

… and remember R=R0A
-1/3



3 Mirror Nuclei
 Does the assumption of the drop model of constant binding energy for 

every constituent of the drop acatually hold for nuclei?

 Compare binding energies of mirror nuclei (nuclei with np). Eg 73Li 
and 74Be.

 If the assumption holds the mass difference should be due to n/p mass 
difference and Coulomb energy alone.

 Let’s compute the Coulomb energy correction from results on previous 
page
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 Now lets measure mirror nuclei masse, assume that the model holds 
and derive ECoulomb from the measurement. 

 This should show an A2/3 dependence 

 And the scaling factor should yield the correct R0 of 1.2 fm

 if the assumptions were right



nn and pp

interaction same 

(apart from 

Coulomb) 

Charge symmetry



3 More charge symmetry
 Energy Levels of two mirror nuclei for a number of excited states

 Corrected for n/p mass difference and Coulomb Energy

Ecorrected



3 From Charge Symmetry to Charge 
Independence

 Mirror nuclei showed that strong interaction is the same for 
nn and pp.

 What about np ?

 Compare energy levels in “triplets” with same A, different 
number of n and p. e.g. 

 If we find the same energy levels for the same spin states 
 Strong interaction is the same for np as nn and pp.

 See next slide
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3 Charge Independence

22
12Mg

22
11Na

22
10Ne

Ecorrected
 Same spin/parity states 

should have the same 
energy.

 Yes: np=nn=pp
 Note: Far more states in 

22
11Na. Why?

 Because it has more np 
pairs then the others

 np pairs can be in any 
Spin-Space configuration

 pp or nn pairs are 
excluded from the totally 
symmetric ones by Herr 
Pauli

 Note also that 22
11Na has 

the lowest (most bound) 
state,  remember for the 
deuteron on next page



3 Charge Independence

 We have shown by measurement that:
 If we correct for n/p mass difference and Coulomb interaction, then 

energy levels in nuclei are unchanged under n  p 

 and we must change nothing else! I.e. spin and space wavefunctions 
must remain the same!

 Conclusion: strong two-body interaction same for pp, pn and 
nn if nucleons are in the same quantum state.

 Beware of the Pauli exclusion principle! eg why do we have 
bound state of pn but not pp or nn?
 because the strong force is spin dependent and the most strongly 

bound spin-space configurations (deuteron) are not available to nn or 
pp. It’s Herr Pauli again!

 Just like 22
11Na on the previous triplet level schema



4 Volume and Surface Term
 We now have all we need to trust that we can apply 

the liquid drop model to a nucleus
 constant density

 same binding energy for all constituents

 Volume term:

 Surface term:

 Since we are building a phenomenological model in 
which the coefficients a and b will be determined by 
a fit to measured nuclear binding energies we must 
inlcude any further terms we may find with the same 
A dependence together with the above

( )VolumeB A aA 
2/3( )SurfaceB A bA 



5 Asymmetry Term
 Neutrons and protons are spin ½ fermions 

obey Pauli exclusion principle.

 If all other factors were equal nuclear ground 
state would have equal numbers of n & p.

neutrons protons Illustration

 n and p states with same spacing .

 Crosses represent initially occupied states in 
ground state.

 If three protons were turned into neutrons 

 the extra energy required would be 3×3 .

 In general if there are Z-N excess protons over 
neutrons the extra energy is ((Z-N)/2)2 . 
relative to Z=N.

 But how big is  ?



5 Asymmetry Term

 Assume:

 p and n form two independent, non-interacting 
gases occupying their own square Fermi wells

 kT << 

 so we can neglect kT and assume T=0

 This ought to be obvious as nuclei don’t suddenly 
change state on a warm summers day!

 Nucleons move non-relativistically (check later if 
this makes sense)



5 Asymmetry Term
 From stat. mech. density of states in 6d phase space = 1/h3

 Integrate up to pf to get total number of protons Z (or Neutrons N), & 
Fermi Energy (all states filled up to this energy level).

 Change variables p  E to find avg. E
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here Nparticle could be the number of protons or neutrons

These are all standard stat. mech. results!



comes from a fit of the 
SEMF to measurements

analytical ≈ 24 MeV

This terms is only proportional to volume 
(A). It has already been captured by the 
Volume term of the liquid drop model

call this K

5 Asymmetry Term

 Binomial expansion keep lowest term in y/A
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 Compute total energy of all protons by Z*<E>

 Use the above to compute total energy of Z protons and N neutrons

change variables from (Z,N,A)
to (y,A) with y=N-Z

where y/A is a small number ()

note! linear terms cancel
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5 Asymmetry term

 From the Fermi Gas model we learn that

 due to the fermionic nature of p and n we loose in 
binding energy if the nucleus deviates from N=Z

 The Asymmetry term: 
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Note: this only holds for nn and pp, not for
np.  We don’t have a preference for even A

6 Pairing Term
 Observations:

 Nuclei with even number of n 
or even number of p more 
tightly bound then with odd 
numbers. See figure

 Only 4 stable o-o nuclei but 
153 stable e-e nuclei.

 p energy levels are Coulomb 
shifted wrt n  small overlap 
of wave functions between n 
and p. 

 Two p or two n in same 
energy level with opposite 
values of jz have AS spin state
 forced into sym spatial w.f.

maximum overlap 

maximum binding energy 
because of short range 
attraction. Neutron number

Neutron separation energy 

[MeV] in Ba isotopes

56+N
56Ba



6 Pairing Term

 Measure that the Pairing effect smaller for larger A 

 Phenomenological*) fit to A dependence gives A-1/2
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*) For an even more insightful 
explanation of the A dependence 
read the book by Jelley

Note: If you want to plot binding 
energies versus A it is often best to 

use odd A only as for these the 
pairing term does not appear



6 Semi Empirical Mass Formula

 Put everything together:
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 Lets see how all of these assumptions fit reality

 And find out what the constants are

 Note: we went back to the simpler Z2 instead of Z*(Z-1)



6 Semi Empirical Mass Formula 
Binding Energy vs. A for beta-stable odd-A nuclei

Iron

Not smooth because Z 
not smooth function of A

Fit parameters 

in MeV

a 15.56

b 17.23

c 23.285

d 0.697

d +12 (o-o)

d 0 (o-e)

d -12 (e-e)



6 Semi Empirical Mass Formula

 Conclusions

 Only makes sense for A≥20

 Good fit for large A (good to <1%) in most places.

 Deviations are interesting  shell effects.

 Coulomb term constant agrees with calculation.

 Explains the valley of stability (see next lecture).

 Explains energetics of radioactive decays, fission and 
fusion.


