Mass Spectrometry Metastable lons

Some fragment ions, undergo secondary fragmentations in the analyzer tube of the mass spectrometer; the resulting "signals" or peaks represent neither the m/e of the first ion nor that of the second ion; instead, "metastable ion" peaks are observed

For a reaction

$$F_1^+ \rightarrow F_2^+$$
 $(m/e)_1 \qquad (m/e)_2$

a "metastable ion" peak, m*, is observed

$$m^* = m_2^2/m_1$$

metastable ion peaks require a special type of spectrometer; they give valuable

information about fragmentation patterns of molecular ions.

Example

neutral odd electron fragment not observed

$$F_2$$
⁺ 149 Δ 28 – CO not observed

metastable ion, $m^* = 149^2 / 177 = 125.4$

The metastable ion peak (125.4) shows that F_1^+ decomposes to F_2^+ plus CO in the analyzer tube.

